
Co-funded by the European Commission within the Seventh Framework Programme

Project no. 318521

HARNESS

Specific Targeted Research Project
HARDWARE- AND NETWORK-ENHANCED SOFTWARE SYSTEMS FOR CLOUD COMPUTING

General Requirements Report
D2.1

Due date: 1 April 2013
Submission date: 25 April 2013

Start date of project: 1 October 2012

Document type: Deliverable
Activity: RTD

Work package: WP2

Editor: John McGlone (SAP)

Contributing partners: all

Reviewers: WP Leaders

Dissemination Level
PU Public

√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Description

0.1 2012/12/10 John McGlone SAP Outline
0.2 2013/03/22 all all partners Intial full draft
0.3 2013/03/29 John McGlone SAP Edits based on partner reviews
1.0 2013/04/24 Alexander Wolf IMP Final review and edits by Coordinator

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T2.1 Analyse state of the art and survey general requirements IMP, EPL, UR1, ZIB, MAX, SAP∗

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
The Hardware- and Network-Enhanced Software Systems for Cloud Computing (HARNESS) project
aims to advance the state-of-the-art in cloud data centres to enable cloud providers to profitably offer
and manage the tenancy of specialised hardware technologies, while also enabling software developers
to seamlessly, flexibly and cost-effectively integrate these technologies with their cloud-hosted applica-
tions.

This report offers a state-of-the-art analysis of cloud computing, separated into the key research
areas of HARNESS, namely platform-as-a-service (PaaS), computation, communication and storage.
It highlights the current limitations of each area in terms of scalability, heterogeneity, resource man-
agement and sharing, and performance. Looking specifically at current cloud platform offerings, most
infrastructure providers offer their own in-house PaaS components. However, a number of innovative
third parties provide PaaS offerings that cover multiple infrastructure providers. That said, support for
specialised resources, and applications that can benefit, is not currently provided at the PaaS layer, most
likely because of the complexity involved in their deployment and use, as well as the simple fact that
they represent non-commodity investments.

Tenant over-provisioning to guarantee quality of service (QoS), coupled with the limited resource
sharing options that exist in current clouds, lead to cloud providers not being able to fully exploit their
infrastructure. In terms of performance, while cloud providers can offer considerable performance im-
provements for embarrassingly parallel applications, accelerated services are currently not directly avail-
able to tenants and, instead, are under the control of experts of the cloud provider. Within typical data
centres, the network is provisioned in a tree-like structure, with edge switches at the edge of the tree and
core switches at the root, and with links often over-provisioned. Such an infrastructure can result in high
maintenance costs for the various switches and an inability to accommodate application-specific traffic
patterns among servers.

Cloud providers usually offer limited choices from three categories of storage solutions: databases,
file-based storage, and block-based storage. Elasticity is provided as vertical scaling for databases,
and vertical and horizontal scaling for file-based storage. In the case of block-based storage, vertical
scalability is limited by physical device sizes. Most providers offer storage based on both hard disk
drive (HDD) and solid-state drive (SSD) devices. Many abstract based on performance, which can
depend on the chosen cloud provider and on options selected by the tenant. Usually, storage solutions
are implemented using standard open-source software, facilitating easy vendor migration.

Looking at past and present EC FP projects, this report identifies possibilities for technology transfer.
While there are a number of projects targeting complementary PaaS and cloud management, which may
provide a solid foundation, none of the projects specifically address the challenges of efficiently hosting
applications in heterogeneous cloud environments. Computation-related projects provide insight into the
programming models, design flows, real-time resource management and how to efficiently exploit re-
configurable devices in heterogeneous environments, but none address this within a cloud environment.
Existing networking projects can be exploited for the management and/or programming of networking
resources, while other projects can be useful to infer the correct interfaces for programming network

i

ii

devices. However, the networking requirements within HARNESS are fundamentally different and it
will therefore be highly unlikely that current interfaces defined in these projects can be used. Looking
at storage, previous and on-going FP projects typically concentrate on high-level abstractions for data
access and computational storage, while there are a number that address storage densities for rotating
disks and non-volatile random access memory (NVRAM).

The general requirements presented in the report cover the key technologies that will be developed
within HARNESS. For each technical area the report states how past and present FP projects relate
or may possibly contribute to fulfilling these requirements, and also shows how the state-of-the-art is
improved by the HARNESS requirements.

Requirements for the PaaS layer will ensure it is capable of executing applications on heterogeneous
computation, communication and storage resources. Providing mechanisms for flexible specification of
applications will also enable dynamic resource allocation for applications to meet requirements such
as cost, resource usage and service-level agreement (SLA) constraints. This will also allow the cloud
operator to manage applications to meet its objectives for load-balancing, resource utilisation, energy
efficiency, and the like.

Requirements for the computation layer aim at ensuring the platform is informed of the available
computational resources. It will also provide characterisation of heterogeneous applications so that run-
time benefits can be ascertained and the platform can make informed decisions on application placement.
Once placement decisions have been provided by the platform, the computational layer will then aim
to optimise the use of resources according to the constraints provided. It will also provide monitoring
data to the platform to support the placement decisions, and provide functionality to enable the shared
use of heterogeneous resources such as data-flow engines (DFEs) and field-programmable gate arrays
(FPGAs). Finally, the computational layer will also provide a compiler infrastructure for deriving multi-
target design variants, reducing time-to-market of accelerated services for cloud tenants and enabling
the tailoring of designs for particular requirements to provide a level of elasticity for heterogeneous
resources.

Communication requirements will ensure that the platform layer is informed of available networking
resources and capacity, and supported additional functionality for in-network processing and expected
performance. The network layer will also allow the platform layer to allocate resources for applications
and report network resource usage. Support for programmable networking will also require an interface
is provided for leveraging network processing units (NPUs) and ensuring verification of NPUs.

The storage layer aims to provide various storage solutions with different performance profiles to
meet differing application requirements, while also providing this information to the platform layer.
This necessitates the mapping of several application requirements to singular devices, which will provide
lower costs to tenants, but will require addressing the challenges of ensuring performance per application
and implementing optimal mapping of reservations to devices.

The outlined requirements concentrate on the goals of the HARNESS project and involve much
innovation. In meeting these requirements the project will develop the use of heterogeneous resources
in cloud computing and considerably advance the state-of-the-art in cloud computing.

Contents
Executive Summary i

Acronyms v

1 Introduction 1
1.1 Purpose and Outline of Report . 1
1.2 Concepts and Objectives . 1
1.3 HARNESS Vision . 2
1.4 Scientific and Technical Objectives . 4

1.4.1 Models for heterogeneous resources and application characterisation 4
1.4.2 Development of a management platform for heterogeneous clouds 4
1.4.3 Design of new programming interfaces and abstractions 4
1.4.4 Support for run-time monitoring, fine-grained resource accounting, and pricing

models . 5
1.4.5 Algorithms for heterogeneous resource allocation and optimisation 5
1.4.6 Technologies for resource virtualisation and sharing 5

2 State of the Art in Cloud Computing 7
2.1 Platform . 7
2.2 Computation . 8
2.3 Communication . 10
2.4 Storage . 11

3 HARNESS General Requirements 13
3.1 Platform . 13
3.2 Computation . 15
3.3 Communication . 17
3.4 Storage . 19

4 Relevant EC FP Projects 21
4.1 Cloud Platforms . 21

4.1.1 4CaaSt . 21
4.1.2 ADVANCE . 22
4.1.3 Cloud-TM . 22
4.1.4 ConPaaS . 22
4.1.5 CumuloNimbo . 22
4.1.6 REMICS . 23
4.1.7 SRT-15 . 23

iii

iv

4.1.8 Cloud4SOA . 23
4.1.9 Contrail . 23
4.1.10 InterSECTION . 24
4.1.11 OPTIMIS . 24
4.1.12 RESERVOIR . 24
4.1.13 SLA@SOI . 25
4.1.14 TClouds . 25
4.1.15 Relation to HARNESS General Requirements 25

4.2 Computation . 27
4.2.1 MORPHEUS . 27
4.2.2 HARTES . 27
4.2.3 PEPPHER . 28
4.2.4 REFLECT . 28
4.2.5 FASTER . 29
4.2.6 Relation to HARNESS General Requirements 29

4.3 Communication . 30
4.3.1 BonFIRE . 30
4.3.2 GEYSERS . 30
4.3.3 FI-WARE . 31
4.3.4 NOVI . 31
4.3.5 Relation to HARNESS General Requirements 31

4.4 Storage . 32
4.4.1 VISION Cloud . 32
4.4.2 Relation to HARNESS General Requirements 33

5 Conclusions 35

Acronyms
API application programming interface. 9, 12, 22, 23, 31

ASIC application-specific integrated circuit. 18

DFE data-flow engine. ii, 2–5, 16, 17

DSP digital signal processor. 8, 27

FPGA field-programmable gate array. ii, 2–4, 8, 15–17, 27

GPGPU general-purpose graphics processing unit. 2–4, 8, 9, 11, 15, 17, 28

HARNESS Hardware- and Network-Enhanced Software Systems for Cloud Computing. i, ii, iv, 1, 2,
4, 5, 7, 8, 13–17, 19, 21, 22, 24, 25, 27–33, 35

HDD hard disk drive. i, 12

IaaS infrastructure-as-a-service. 7, 9, 21, 23–25, 32

IOPS input/output operations per second. 12, 19

IoT Internet of Things. 30

LGPL Lesser General Public License. 25

MPSoC multiprocessor system-on-chip. 27

NPU network processing unit. ii, 4

NVRAM non-volatile random access memory. ii

OMG the Object Management Group. 23

PaaS platform-as-a-service. i, ii, 1, 2, 7–9, 13, 21–25

PCI peripheral component interconnect. 8

PCM phase-change memory. 2

POSIX portable operating system interface. 11

v

vi

QoS quality of service. i, 9, 23, 24, 30, 31

RAID redundant array of independent disks. 11, 12

SLA service-level agreement. ii, 5, 13–15, 21, 24–26

SSD solid-state drive. i, 2–4, 12

VM virtual machine. 3, 8, 9, 24, 30

1 Introduction
1.1 Purpose and Outline of Report

This report documents the general requirements identified for the Hardware- and Network-Enhanced
Software Systems for Cloud Computing (HARNESS) platform from an analysis of the state-of-the-art
and relevant FP7 projects. This task extends the initial state-of-the-art analysis to identify requirements
for the HARNESS platform that can be established from existing literature and projects.

In this first chapter, the key concepts of the project are introduced, highlighting the HARNESS vi-
sion and project objectives. Chapter 2 addresses the state-of-the-art in cloud computing with a focus
on the key technology areas within the HARNESS project, namely cloud platforms, computation, com-
munication and storage. Chapter 4 provides an overview of relevant projects, again covering the key
technology areas, with a focus on FP7 projects and how past and present FP7 projects can relate and
contribute to fulfilling HARNESS requirements. Chapter 3 presents the HARNESS general require-
ments, a description of each with details on Innovation, importance and dependencies along with task
relationships. Chapter 5 concludes the document.

1.2 Concepts and Objectives

Cloud computing is reshaping the IT landscape, with increasingly large numbers of businesses, govern-
ments, and scientists seeking to offload mission-critical applications to third-party data centre providers.

Today, the dominant approach to constructing data centres is based on the assembly of large num-
bers of relatively inexpensive personal computers, interconnected by standard IP routers and supported
by stock disk drives. This is consistent with the current business model for cloud computing, which
leverages commodity computation, communication, and storage to provide low-cost application host-
ing. Taken together, the resources offered by cloud providers constitute a platform upon which to
execute applications. The efficacy of this platform-as-a-service (PaaS) depends upon the provider’s
ability to satisfy a broad range of application needs while at the same time capitalising on infrastructure
investments by making maximal use of the platform’s resources.

This allocation and optimisation problem exists whether the cloud data centre is operated for public
use, as done by Amazon, Microsoft, and many smaller players, or for private use, such as by financial and
government institutions. Two key concepts underlying the cloud data centre allocation and optimisation
problem are managed multi-tenancy and elasticity. The first concept captures the idea that the provider
must accommodate and reconcile the resource needs of several applications simultaneously, while the
second captures the idea that an application’s allocation of resources should grow and shrink over time.
At play here are many conflicting concerns, principally application requirements, resource capacity and
availability, and pricing (again, whether billed externally or internally).

In trying to solve this problem, providers are naturally led to a platform design that abstracts and ho-
mogenises, which explains today’s ubiquitous platform elements: virtualisation, simple key/value stores

1

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

and distributed file systems, map/reduce data-flow computational structures, service-oriented architec-
tures, and the like.

Despite continuing efforts to refine and improve this basic foundation through numerous research
and innovation programmes, cloud data centre providers are realising that a fundamental limit has been
reached in the ability of traditional application scaling alone to adequately achieve specific perfor-
mance, availability, and cost requirements for many important applications. This limit is threatening
the broader adoption of cloud computing, and thereby threatening the market for cloud services. Data
centre providers must therefore rethink and reformulate the foundations of their computing platform,
and look to radical new ways of satisfying application requirements.

The seed for a new approach can be found in the emergence of innovative hardware and net-
work technologies. These technologies span from computational devices, such as data-flow engines
(DFEs) utilising field-programmable gate arrays (FPGAs) and general-purpose graphics processing
units (GPGPUs), to new communication fabrics such as programmable routers and switches, to new
storage devices and approaches, such as solid-state drives (SSDs) and phase-change memorys (PCMs).

Advanced hardware and network technologies for improving computation, communication, and stor-
age have yet to be integrated into cloud computing platforms. The simple reason is that they break the
abstract, homogeneous, and commodity nature of today’s PaaS computing model. The exception that
perhaps best proves this rule can be found in Amazon’s recent offering of direct access to the GPG-
PUs installed on some of its data centre servers [5]. Application developers can choose to implement
(portions of) their applications for execution in the standard CPU environment or in the highly parallel
and non-traditional GPGPU environment. But they must make this choice explicitly, adopt radically
different designs for each case, and find ways to manage the allocation of the resources themselves.
This substantially increases the cost and complexity of application development, shifts some amount of
responsibility for resource management from the cloud provider back onto the application operator, and
significantly reduces the flexibility of the cloud provider to optimally manage multiple tenants.

We can summarise the current situation by observing that the existing model of the cloud data centre
is a barrier to the adoption and exploitation of the newest generation of computing technologies. These
technologies offer significant benefit to end users and society at large in terms of reduced costs, re-
duced energy use, and increased performance. However, they also present enormous challenges to both
application developers and cloud operators to deliver this benefit.

1.3 HARNESS Vision

HARNESS aims to advance the state of the art in cloud data centre design so that:

1. cloud providers can profitably offer and manage the tenancy of specialised hardware and network
technologies, much as they do today’s commodity resources; and

2. software developers can seamlessly, flexibly, and cost-effectively integrate specialised hardware
and network technologies into the design and execution of their cloud-hosted applications.

To realise this goal, we plan to develop an enhanced cloud PaaS software stack that not only incorporates
a wide variety of specialised technologies, but embraces the heterogeneity (of performance and of cost)
that those technologies embody. These resources offer a much richer, but also more complex, context

2

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

Computation Communication Storage

CPUs, GPGPUs,
FPGAs, ...

OpenFlow switches,
software routers, ...

memory, SSDs,
hard disks, ...

provider policiesinter-resource
allocation & optimisation

resource
policies

Platform

intra-resource
allocation & optimisation

application logic &
requirements

task graphs resource
availability

task
deployment

resource
monitoring

Application 1 Application 2 Application 3

Figure 1.1: Overview of the HARNESS approach.

in which to make price/performance trade offs, bringing wholly new degrees of freedom to the cloud
resource allocation and optimisation problem. Further, those trade offs are inherently time dependent
and time critical, with the dynamic goals and behaviour of the application, the user, the other cloud
tenants, and the cloud provider all intersecting and sometimes conflicting through time.

In our vision, depicted in Figure 1.1, a demanding cloud application consists of a number of com-
ponents, some of which can have multiple, alternative implementations that exhibit different resource
demands, performance characteristics, and cost. Applications express their computing needs to the cloud
platform, as well as the price they are prepared to pay for various levels of service. This expression of
needs and constraints builds upon what can be expressed through today’s simple counts of virtual ma-
chines (VMs) or amounts of storage, to encompass the specific and varied new factors characteristic of
specialised hardware and network technologies.

The cloud platform will have access to a variety of resources to which it can map the components of
an application. Resources include standard VMs, commodity CPUs, and stock disk stores, of course, but
also specialised devices such as various types of high-end FPGA-based DFEs and GPGPUs, network
appliances, and advanced storage media such as SSDs. A flexible application may potentially be de-
ployed in many different ways over these resources, each option having its own cost/performance/usage
characteristics.

Our approach operates at three levels. At the lowest level are the specialised technologies them-
selves. These are virtualised into the computation, communication, and storage resources available at
the next level. The platform level at the top provides a management and programming abstraction to
applications. The idea is to provide flexibility to the platform as to which and how many resources

3

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

within a category are used and when, and to separate that concern from the low-level deployment and
monitoring of the concrete elements.

Overall, the platform is charged with making informed decisions as to the optimal deployment that
can simultaneously satisfy tenant applications (e.g., performance and price) and the cloud provider (e.g.,
profitability or energy efficiency). We see these deployment decisions taking place upon application
start up or at well-defined points during execution (i.e., as a dynamic re-deployment or reconfiguration).
The optimal deployment may thus change at run time based on dynamic criteria such as variations in
the workload, changing performance expectations, and the spot price and availability of specialised
computing devices.

Instead of exposing heterogeneity at the bare device level (as done today, for example, by Amazon
with its GPGPU facility mentioned above), tenants should be able to describe needs and constraints for
their applications, including an indication by when they will require results to be delivered or how much
they are willing to pay, so that the provider, based on the current state of the data centre, can decide
how and when to allocate the appropriate mix of commodity and specialised resources. This will be a
fundamental paradigm shift from the traditional resource-oriented view of cloud computing to one that
we characterise as results oriented. This shift has broad implications and far-reaching consequences for
the design, development, and use of cloud data centres.

1.4 Scientific and Technical Objectives

This section details the main scientific and technical objectives of the HARNESS project.

1.4.1 Models for heterogeneous resources and application characterisation

The first objective is a precise characterisation of the heterogeneous hardware resources used in HAR-
NESS. These include computational resources (e.g., DFEs/FPGAs and GPGPUs), network switches and
routers (e.g., network processing units (NPUs)), and storage systems (e.g., SSDs). The goal is to extract
the key properties of these resources, for example in terms of processing throughput or access latency.
These will be needed to build accurate performance models used during the resource allocation and
optimisation processes.

1.4.2 Development of a management platform for heterogeneous clouds

A key outcome of HARNESS will be to provide a software infrastructure to manage heterogeneous
resources. We envision that this platform will operate at both the resource and data centre levels. At
the resource level, the HARNESS platform will be responsible for executing applications (or parts of
them) on appropriately virtualised heterogeneous resources. At the data centre level, the platform must
manage all resources and mediate between different applications and resources.

1.4.3 Design of new programming interfaces and abstractions

HARNESS will shift away from the traditional, resource-oriented cloud programming models in favour
of results-oriented paradigms, in which tenants specify their application logic and requirements in high-
level languages. This will enable cloud providers to satisfy these requirements by mapping applications

4

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

to specific heterogeneous resources using the platform. This requires flexible and efficient programming
interfaces and abstractions. On the one hand, they should be expressive enough to allow applications
to achieve high performance; on the other hand, they must be flexible enough to permit cloud providers
the opportunity to decide at run time which and how many resources to dedicate to a given application,
potentially re-allocating resources when operating conditions (or prices) change. HARNESS will de-
velop two distinct sets of programming interfaces. One will be used by cloud tenants to specify desired
application behaviour in a resource-agnostic fashion. After the resource allocation and optimisation per-
formed by the HARNESS platform, the other, resource-specific programming interfaces will be used by
the platform to deploy and control application components on particular resources, such as DFEs and
software routers.

1.4.4 Support for run-time monitoring, fine-grained resource accounting, and pricing
models

To make decisions about the best mapping of application components to heterogeneous resources, the
HARNESS platform must monitor resource availability and observed application performance. Particu-
lar attention must be devoted to identifying “straggling” resources, that is, ones performing significantly
worse than expected. This is especially relevant for distributed computations, such as MapReduce [26],
whose total completion time is dominated by the slowest task to finish. Resource monitoring ensures that
resources that deviate from their performance targets are identified early and replaced by others through
task re-allocation. Run-time monitoring must also provide fine-grained accounting statistics on resource
usage that can inform the pricing and billing models of the cloud provider. Information about resource
usage must be collected in a scalable fashion and with necessary detail, without impacting application
performance. Pricing models used by cloud providers can then reflect the heterogeneous nature of re-
sources in terms of the widely differing capital and operational expenditures of individual heterogeneous
resources.

1.4.5 Algorithms for heterogeneous resource allocation and optimisation

At the core of the HARNESS approach are algorithms that receive as input the application requirements
and characteristics, the current state of the heterogeneous resources annotated with their performance
models, and the provider’s internal policies and tenant service-level agreements (SLAs), and then output
the set of resources that should be assigned to an application. This resource allocation process is not a
static process, but rather it should run continuously and adapt to changing conditions, such as when new
tasks arrive or resource performance degrades.

1.4.6 Technologies for resource virtualisation and sharing

Closely related to the objective of resource allocation and optimisation is the question of how to share
heterogeneous resources efficiently. This objective involves the development of new approaches for
the efficient and secure virtualisation of heterogeneous resources, including hardware accelerators, pro-
grammable network devices, and storage technologies. HARNESS will address this objective along
three dimensions: scalability, performance isolation, and security.

5

6

2 State of the Art in Cloud Computing
In this section we discuss the current state-of-the-art in cloud computing. This is broken down into
four technical areas: platform, computation, communication, and storage. For each area we present the
status quo and highlight the limitations of the technology in terms of scalability, heterogeneity, resource
management and sharing, and performance. It is the purpose of the HARNESS project to address these
limitations; the general requirements to do so are presented in Chapter 3.

2.1 Platform

PaaS refers to a variety of cloud middleware services intended to facilitate the use of cloud infrastructure
resources by application programmers. As such, it covers a wide variety of services, ranging from
elementary components such as load balancers and NoSQL databases, to MapReduce [26] and similar
high-performance computational frameworks, to integrated run-time environments capable of hosting
entire complex applications in the cloud.

• Platform operators. Many cloud infrastructure providers complement their commercial offer
with PaaS components. For example, the Amazon cloud provides services such as RDS [10]
(a relational database service), DynamoDB [6] (a non-relational database service), Elastic
Beanstalk [8] (a Web application container service), and many more. Similarly, Google pro-
vides App Engine [36] (a Web application container service) and Microsoft provides Windows
Azure [52] (an application container service). Acting as both the infrastructure and the platform
service provider offers a number of technical benefits, such as giving low-level monitoring infor-
mation to the platform layer.

However, some of the most innovative PaaS offerings are developed by third-party entities that
exploit computing resources acquired from classical infrastructure-as-a-service (IaaS) providers.
For example, Heroku [44] provides easy-to-use hosting services for applications written in a large
variety of programming languages. ConPaaS [20, 63] supports applications designed as complex
compositions of elementary elastic services. Separating the platform operator from the infrastruc-
ture provider allows certain platforms to support a variety of underlying cloud infrastructures. For
example, CloudFoundry [19] (developed as open-source software by VMware) obviously supports
VMware’s vSphere virtualisation infrastructure, but it can also run in the Amazon cloud. Simi-
larly, ConPaaS supports the execution of cloud applications across multiple cloud infrastructures.

• Application domains. A vast majority of applications running in the cloud are arguably Web-
based. As a consequence, most of the cloud platform services specifically focus on this particular
domain. Another important application domain in the cloud is high-performance computing (data
mining, scientific applications, etc.). A number of cloud platforms target this type of application
by providing, for example, MapReduce frameworks. Interestingly, although many real-world

7

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

applications combine aspects of a high-performance execution back end and a Web-based front
end, few platforms integrate both functionalities in a single offering.

• Heterogeneity. We are not aware of public platform services that are specifically capable of
exploiting heterogeneity in the cloud. All the well-known PaaS systems rely exclusively on tra-
ditional server, networking, and storage resources [8, 20, 36, 44, 52]. It is clear, however, that
good use of such heterogeneous resources can only increase the scalability and cost-efficiency of
demanding applications. The main expected contribution of the HARNESS project is therefore
to enable cloud applications to benefit from the combined strengths of a variety of heterogeneous
resources in present and future cloud infrastructures.

2.2 Computation

The cloud infrastructure fundamentally hinges on servers, switches, and disks. By abstracting IT ser-
vices from the underlying hardware infrastructure, the cloud platform can provide computational re-
sources that can be scaled on demand in a multi-tenant environment. In this section, we provide an
overview of the state-of-the-art in cloud computation according to some of its relevant features [67].

• Scalability. In the current cloud landscape, data centres scale horizontally to cope with the in-
creasing complexity of computational requirements, number of users, and economies of scale. In
horizontal scaling, hosts are replicated to meet demand. However, this solution requires compu-
tations to be balanced across a wider range of resources, placing an extra burden on the network
infrastructure as well as increasing the energy footprint. Vertical scaling, on the other hand, is
seldom exploited by cloud providers, apart from upgrading to faster machines. This is because
vertical scaling requires complex analysis of the application logic running on the cloud, such as
internal dependencies and communication requirements, to exploit the capabilities of local com-
putational nodes, such as parallel architectures and specialised functional units.

• Heterogeneity. The cloud infrastructure is generally built around a homogeneous set of com-
modity hardware. Since general-purpose processors (CPUs) are limited by power and compute
density, heterogeneous resources acting as accelerators, such as FPGAs, digital signal processors
(DSPs), and GPGPUs, are capable of improving these metrics by orders of magnitude [55]. In
addition, such accelerators can be specialised for specific types of computations to achieve more
performance and energy efficiency. Cloud providers such as Amazon are recognising the benefits
of heterogeneity for the larger high-performance computing community, and offer GPGPU cluster
instances [5]. However, one of the challenges for adopting heterogeneity in cloud environments is
that native virtualisation support in accelerators is limited at best, but more typically non-existent.
This makes them difficult to share across multiple VMs. A notable exception is NVIDIA, which
introduced the VGX platform [57] in 2012. This platform allows a new generation of GPGPUs
to be virtualised by supporting, for instance, a hardware memory management unit that translates
virtual addresses, and a software-based GPGPU hypervisor allowing multiple VMs to use a single
physical GPGPU.

For hardware that does not support virtualisation, a common strategy, as adopted by Amazon
EC2 [7] for their GPGPU cluster instances, is to use peripheral component interconnect (PCI)

8

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

pass-through to provide the VM direct access to accelerators [77]. On the other hand, instead
of passing the physical accelerators to the VM, approaches such as gVirtuS [35], vCuda [68],
and GViM [42] virtualise GPGPUs by using application programming interface (API) call inter-
ception and redirection between the software API operating in the VM and the physical GPGPU
installed in the host system.

Another form of virtualisation is through elastic functions [48, 76]. Unlike normal C-like func-
tions, elastic functions can capture multiple implementations (variants) with meta-information,
such as assumptions about characteristics of the input data. This allows a run-time system to
make informed decisions about which implementations to use to optimise the application code on
potentially different architectures. Developers simply need to call an elastic function, and rely on
the resource management system to make run-time decisions about how the workload is going to
be distributed across a multi-core heterogeneous system.

• Resource management. A typical cloud computing service, such as Amazon EC2, provides users
the option to select the number of virtual instances, the amount of memory, number of cores,
amount of storage and type of architecture (32-bit/64-bit). In addition, users can opt to use au-
tomatic scaling, in which the number of virtual instances is automatically increased or decreased
according to actual usage. This dynamic management of resources is yet far from optimal. To
start with, it is difficult for potential tenants to assert the relationship between pricing, effort and
benefits of using the cloud. This is largely due to the difficulty of establishing cost models and
mechanisms that allow tenants to perform capacity planning. To do so, tenants must understand
compute patterns, such as how they change periodically, and what kind of infrastructure is neces-
sary to support them [4]. Current automatic scaling technology is not fast enough to respond to
sudden changes in capacity needs [51, 79]. This effectively forces cloud tenants to over-provision
resources to guarantee quality of service at higher costs. On the other hand, cloud providers are
not able to capitalise under-utilisation to fully exploit their infrastructure.

• Resource sharing. Cloud platforms allow multiple users to deploy applications on the same hard-
ware infrastructure. Currently there are different mechanisms that support multi-tenancy accord-
ing to the cloud model used. For IaaS approaches, such as Amazon EC2 and Google Compute
Engine [37], the same physical hardware can be shared by multiple operating system instances
using a hypervisor. On the other hand, in a PaaS context, such as Heroku [44] and Google App
Engine [36], code and data are isolated for different applications and users on the same operating
system instance. This prevents the need to allocate virtual instances for every launched application
or service, but creating adequate isolation mechanisms remain a major challenge. In particular,
one of the difficulties of implementing isolation is distinguishing how specific users affect re-
source consumption. This is a necessary capability not only to assess usage/cost value for cloud
tenants, but also to guarantee quality of service (QoS) on a per-tenant basis.

In addition, current resource sharing technology is still vulnerable to security issues [39] where,
for instance, a tenant’s data and code spaces can be compromised. Examples of computational
resource vulnerabilities include: attackers analysing and exploiting vulnerabilities in virtual tem-
plate images that are cloned to provide on-demand services; data leakage caused by VM replica-
tion; and cryptographic vulnerabilities due to weak random number generation brought by virtu-
alisation layers.

9

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

• Performance. Cloud platforms are natural candidates for providing high-performance comput-
ing due to their potential to support large-scale hardware infrastructures. But there are factors
as mentioned previously that affect performance, such as scalability level, type of infrastructure
used, how the application was developed, and how resources are exploited. As the infrastruc-
ture becomes larger, more complex and heterogeneous, it becomes increasingly difficult for cloud
tenants to effectively exploit the cloud infrastructure (which is mostly hidden from them), and
cloud providers to take full potential of their infrastructure. A popular programming paradigm for
exploiting clusters and data centres is MapReduce, which allows tenants to reformulate embar-
rassingly data-parallel programs to effectively exploit multiple distributed compute nodes. Other
forms of exploiting the cloud infrastructure is the use acceleration services provided by the cloud
provider in specific application domains [70].

2.3 Communication

Cloud providers do not typically disclose any information on their network architecture (e.g., how their
servers and other computing devices are interconnected) or network management (e.g., how they make
sure that the network is not overloaded, or how they handle link or network-device failures). Based
on the glimpses that researchers get and report every now and then [3], the typical cloud network is
organised in a tree: servers and other computing devices are physically connected to edge switches that
are in turn physically connected to (fewer) aggregation switches that are physically connected to (even
fewer) core switches. In this setting, then, the edge switches constitute the leaves of the tree, while
the core switches are at the root. To reduce cost, the network links are typically oversubscribed and so
cannot accommodate just any traffic pattern among the servers.

The research community has already identified at least two disadvantages of this approach: (1) the
high cost of maintaining different kinds of switches, especially the aggregation and core switches, which
need to satisfy significantly higher bandwidth requirements than the edge switches, and (2) the lack of
support for full bisection bandwidth. The latter refers to the inability to accommodate arbitrary traffic
patterns among the servers due to the over-subscription of the network links. To remedy these problems,
researchers have proposed network architectures that offer full bisection bandwidth at a lower cost; they
achieve this by using more sophisticated interconnection topologies (e.g., a fat tree instead of a classic
tree [3]) and more sophisticated routing algorithms (e.g., valiant load balancing among some of the
switches [38]). An alternative approach to reducing cost, although not necessarily offering full bisection
bandwidth, is to replace traditional network devices with commodity servers [22, 40, 41].

We do not provide more details regarding the current and upcoming cloud network architectures,
because our goal is not to innovate in that area. In particular, we do not want to change the network
interconnect or routing algorithms, but rather the programmability of the network. Current network
devices are typically not programmable, which means that once they are deployed, one cannot make
them support new types of traffic processing. Yet, we have strong evidence that the performance of
certain data centre applications, such as MapReduce, would benefit significantly from certain types of in-
network computation [23]. What we want to do, then, is to enable the data centre operator to reprogram
the network devices with new types of in-network computation, depending on the applications that are
to be run.

Our goal is related to the recent work on software routers, which are network devices built from

10

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

programmable components, such as CPUs and GPGPUs. Several research prototypes have demon-
strated that such programmable hardware is capable of high-performance packet processing (i.e., line
rates of 10 Gbps or more), assuming simple, uniform workloads, where all the packets are subjected to
one particular type of packet processing: IP forwarding [27], GPGPU-aided IP forwarding [43], multi-
dimensional packet classification [50], or cryptographic operations [46]. Similar to this work, we want
to build high-performance, programmable network devices. However, unlike this work, we are inter-
ested in network devices that can run a wide range of packet-processing applications and simultaneously
serve multiple clients with widely different needs.

2.4 Storage

Storage in clouds comes in three flavours: databases, file-based storage, and block-based storage. We
consider the state-of-the-art for each in turn.

• Databases. Most cloud providers provide managed databases for structured data. The offers can
roughly be split into SQL and NoSQL databases. Almost all cloud providers provide some man-
aged SQL databases such as basic Oracle Database [62] or MySQL [54]. NoSQL databases are
usually Google BigTable [16] clones or data warehouse infrastructures such as Apache Hive [11].

• File-based storage. can be used as an interface to content-delivery networks, where the cloud
provider distributes copies of the file world-wide, and access time for customers is lower. It can
also be used as a front end to backup services, where multiple replicas of the objects (files) are
stored to increase durability. We are not aware of any major cloud provider offering distributed
file systems with portable operating system interface (POSIX) semantics, which would make the
sharing of data between legacy applications easier.

• Block-based storage. This form of storage provides only raw block devices without a file system.
The advantage is that the user can decide which file system they want to use and they can aggregate
several redundant array of independent disks (RAID) volumes into one. The storage is either
provided by local disks on the same physical node or on remote disks over the network, such as
in Amazon EBS [9].

In the following, we use the same five features from the state of the art in cloud computation description
to analyse storage.

• Scalability. For scalability, we have to analyse the three different storage flavours separately.
For traditional SQL databases the most commonly used option is vertical scaling. Except for
expensive hardware solutions, horizontal scaling is oriented towards read-only replicas. NoSQL
databases are focused on horizontal scaling. This is transparently handled by the provider. In
managed deployments, users either provision throughput or the number of servers.

For file-based storage, both vertical and horizontal scalability can be handled seamlessly by the
cloud provider. There are no practical limits on the number of objects (files) or the access fre-
quency.

11

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

For block-based storage, vertical scalability is limited by the physical limits of the devices and
how many devices can be aggregated using RAID. These are inherent limits that also apply to
non-cloud environments.

• Heterogeneity. All major cloud providers have started to adopt SSDs. Depending on the appli-
cation profile, users can now choose between hard disk drives (HDDs) and SSDs. Often, it is
also possible to provision resources on a more abstract level by specifying desired input/output
operations per second (IOPS).

• Resource management. For databases and file-based storage, there are automatic scaling options
within limits. For block-based storage, the reserved resources are usually fixed. But changing the
deployment of data-intensive services is expensive because data must be copied.

• Portability. Storage portability is easier than for computational resources. Databases are often
based on standard open-source software, which makes changing providers easier. For file-based
storage, smaller providers tend to copy the market leader’s APIs.

• Performance. Performance tuning is a major issue with storage. Some products come with tight
performance guarantees, while others only provide best effort. Moreover, they lack mechanisms
for isolating multiple tenants on the same device or service.

Studies have shown that when Amazon introduced block storage with provisioned IOPS, storage
performance became much more predictable. However, they can only guarantee performance for
random access, as there are still no products that can guarantee performance for sequential access.

12

3 HARNESS General Requirements

This section presents the general requirements for HARNESS. These requirements cover the main tech-
nologies to be developed within the project: a PaaS platform for managing heterogeneous technologies
and the infrastructures for managing heterogeneous computation, communication, and storage resources
and their interactions with the PaaS platform management layer. Each requirement has an accompanying
description, the level of innovation required to fulfil the requirement, the level of importance in fulfill-
ing the requirement, possible dependencies with other requirements, and the related DoW tasks charged
with fulfilling the requirement.

3.1 Platform

The goal of the HARNESS platform is to offer an execution environment capable of deploying appli-
cations over a collection of heterogeneous computation, communication, and storage resources in the
cloud. It will support the specification of flexible applications capable of exploiting this heterogeneity
and dynamically change its use of resources based on its current workload, the current cost and avail-
ability of specialised resources, and the SLA that it is supposed to achieve. Similarly, the cloud platform
operator will be able to steer the resource usage of applications to satisfy their own objectives such as
load balancing, consolidation, energy efficiency, and profit.

R1 Provide an execution platform for using heterogeneous resources
The HARNESS platform should provide an execution platform capable of deploying cloud
applications over heterogeneous resources.

State-of-the-art focus: platforms, heterogeneity.
Task: T6.1,
T6.2, T6.3

Innovation: high Importance: critical
Dependencies: R9, R11-R15, R17-24

13

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

R2 Provide support for flexible applications
The HARNESS platform should support the execution of applications offering a level of freedom in
the set of computational, communication, and storage resources they require. This may be realised
by a variety of mechanisms: (i) defining rules for horizontal scalability of the application;
(ii) authorising application developers to provide multiple implementations of the same functionality
featuring different trade offs between the required resources and the achieved performance;
(iii) automatically recompiling applications as a means to automate the generation of multiple
versions of the application. The platform will autonomously choose one of the available deployment
options in order to best enforce the required SLA.

State-of-the-art focus: platforms, heterogeneity.
Task: T6.1,
T6.2, T6.3

Innovation: high Importance: critical
Dependencies: R3-R4,R6-R8, R11-R12, R14-R16, R20-23

R3 Provide an application description language
The HARNESS platform should provide a description language that application developers can use
to specify the functional and non-functional requirements of an application. The functional
requirements include the list of software components of the application as well as the location of
executables, input and output data. Non-functional requirements include a description of the
different ways the application may be deployed on various sets of resources.

State-of-the-art focus: platforms.
Task: T6.1 Innovation: medium Importance: critical

Dependencies: none

R4 Provide an SLA description language
The HARNESS platform should provide a language to allow application users to specify their
expectations of application performance and execution costs.

State-of-the-art focus: platforms.
Task: T6.1 Innovation: low Importance: moderate

Dependencies: none

R5 Implement application performance model generation
The platform should be able to conduct experiments in order to learn the performance behaviour of
new flexible applications.

State-of-the-art focus: platforms.
Task: T6.2 Innovation: high Importance: moderate

Dependencies: R1-R2

14

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

R6 Implement resource co-allocation scheduler (per application)
The platform should be able to translate resource co-allocation requests into a set of single-resource
reservation requests in order to best satisfy an application’s SLA.

State-of-the-art focus: platforms.
Task: T6.2 Innovation: high Importance: critical

Dependencies: none

R7 Implement resource co-allocation scheduler (multi-application)
When confronted with conflicting resource reservation requirements from multiple applications, the
platform should make informed decisions in order to maximise the cloud operator’s profits.

State-of-the-art focus: platforms.
Task: T6.3 Innovation: high Importance: critical

Dependencies: none

R8 Provide design patterns for flexible applications
The project should identify best practices for the development of flexible applications to be deployed
on the HARNESS platform.

State-of-the-art focus: platforms, application domains.
Task: T6.4 Innovation: medium Importance: moderate

Dependencies: R2

3.2 Computation

The next set of requirements relate to compile-time and run-time generation and exploitation of hetero-
geneous computation resources in the context of the HARNESS platform.

R9 Develop a heterogeneous computational resource discovery protocol
The protocol should provide the cloud platform layer with an inventory of available computational
resources such as CPUs, FPGAs, and GPGPUs (see Figure 1.1). This will be coarse grained in
nature, providing the level of granularity required by the cloud platform to make high-level job
placement decisions. Placement decisions will then be passed to a computational resource manager
for run-time allocation.

State-of-the-art focus: heterogeneity, resource management.
Task: T3.1 Innovation: medium Importance: critical

Dependencies: none

15

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

R10 Develop a compiler infrastructure to derive multi-target design variants
The compiler infrastructure should allow domain-specific knowledge about the application and/or
hardware platform to be codified and subsequently applied in a systematic and automated way to
generate multiple designs that satisfy different non-functional concerns such as performance,
resource utilisation and energy efficiency. The development of high-performance applications is
typically a long and error-prone process due to the complexity of the hardware processing elements
and the multitude of possible design choices. With the proposed compiler infrastructure, cloud
providers will reduce time-to-market of new acceleration services for cloud tenants, exploiting the
underlying hardware infrastructure. In addition, multi-target design variants will support vertical
scaling (elasticity) in HARNESS by allowing a resource manager to select which designs to use
according to an established usage/cost trade off.

State-of-the-art focus: scalability, heterogeneity, performance.
Task: T3.1 Innovation: high Importance: moderate

Dependencies: none

R11 Provide characterisation of heterogeneous applications
Characterise each low-level task, by heterogeneous resource used, based on the quantity of data, data
transfer speed and other metrics, such that the benefit of using such a resource is known at run time.
Using these low-level task characterisations, we will be able to provide an implementation
evaluation that can be used by the HARNESS platform to select a particular application
implementation in the absence of any accrued historical data.

State-of-the-art focus: scalability, resource management.
Task: T3.1 Innovation: high Importance: critical

Dependencies: none

R12 Enable shared use of heterogeneous computational resources
While conventional CPUs can be shared between multiple processes, through the use of
operating-system scheduling techniques, or multiple users entirely isolated, through the use of
virtual machines, no such mechanisms exist for the full range of heterogeneous computational
resources that will be exploited by HARNESS. Resource sharing will be critical for supporting
multi-tenancy and maximising the benefits of heterogeneous computational units, particularly for
high-value resources such as FPGA-based DFEs, where under-utilisation represents a significant
wasted capital investment.

State-of-the-art focus: heterogeneity, resource management, resource sharing, performance.
Task: T3.3 Innovation: high Importance: critical

Dependencies: none

16

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

R13 Provide monitoring data to support decision making at the cloud platform layer
The cloud platform layer will allocate resources to applications based on an estimate of the
performance of such an allocation. Estimates will be created from measured performance over the
lifetime of the cloud’s operation. In order to maximise the accuracy of these estimates, applications
should measure and feedback performance data so that the cloud platform layer can learn from and
improve upon allocation decisions.

State-of-the-art focus: resource management, resource sharing.
Task: T3.3 Innovation: medium Importance: critical

Dependencies: none

R14 Optimise the use of resources according to optimisation goals within constraints
provided by the cloud platform layer.

Given a budget or allocation of resources from the cloud platform layer, applications should aim to
optimise their performance by choosing to run compute tasks on the best available resources at run
time, based on the current demand placed upon the computational resources and the expected
performance. The best device is chosen to be the one that can best satisfy the performance
constraints that the cloud layer communicates, such as minimal execution time, highest precision or
lowest power consumption. The resource manager will operate at a node level and have access to
CPUs, local co-processors, such as GPGPUs and remote computational elements such as DFEs.
Achieving best use of these resources is required to maximise profit for the cloud vendor and
minimise cost for the consumer. Therefore, a key requirement of the resource manager is to manage
application interactions with available resources to meet the goals set by the cloud platform layer.

State-of-the-art focus: scalability, resource management, performance.
Task: T3.2 Innovation: high Importance: critical

Dependencies: R6

3.3 Communication

The next set of requirements relate to the integration of dependable and predictable programmable soft-
ware routers and in-networking processing into the HARNESS platform.

R15 Enable programming of network processing units
The network should export and implement an interface through which cloud applications can
leverage network processing units. For example, MapReduce applications can benefit significantly
from in-network aggregation. The network should provide a way to add such aggregation
functionality to programmable network-processing units, such as general-purpose CPUs or FPGAs.

State-of-the-art focus: network programmability, heterogeneity.
Task: T4.3 Innovation: high Importance: critical

Dependencies: none

17

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

R16 Implement verification of properties of network processing units
The properties of network-processing units should be verifiable. For example, suppose that a
network processing unit is programmed to perform a certain kind of packet filtering. It should be
possible to verify (prove) that this filtering does not cause the network processing unit to crash and
introduces no more than a known, acceptable per-packet latency.

State-of-the-art focus: network heterogeneity, performance.
Task: T4.1,
T4.3

Innovation: high Importance: critical
Dependencies: none

R17 Provide a description of network resources
The network should report to the platform: (i) the availability of in-network processing units: (ii) the
functions they support; (iii) their performance properties; and (iv) the capacity between each pair of
directly connected network processing units. For example, the platform should know that there
exists a switch with 64 10 Gbps ports, interconnected through an ASIC that performs switching and
filtering at full bisection bandwidth, and that this ASIC is connected through a 100 Gbps link to 16
general-purpose 2.8 GHz cores that are programmed to perform in-network aggregation at a certain
rate. This is necessary to enable the platform to allocate specific network resources to specific tenant
applications.

State-of-the-art focus: network management.
Task: T4.2 Innovation: low Importance: critical

Dependencies: none

R18 Manage the allocation of network resources
The network should allow the platform to allocate network resources to specific tasks. For example,
the platform should be allowed to dictate that a particular distributed application be allocated 5 Gbps
between two general-purpose cores (located either at a server or inside a network-packet-processing
unit). This is necessary to enable the platform to ensure a certain level of performance to each task.

State-of-the-art focus: network management, heterogeneity, performance.
Task: T4.2 Innovation: medium Importance: critical

Dependencies: R6

R19 Provide reporting of network-resource usage
The network should report to the platform how much each network resource is currently used. For
example, the platform should know that a particular in-network processing unit is idle. This is
necessary to enable the platform to reuse recently freed network resources.

State-of-the-art focus: network management.
Task: T4.2 Innovation: low Importance: critical

Dependencies: none

18

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

3.4 Storage

The goal of the storage component is to provide different kinds of storage with different performance
profiles. Instead of reserving physical devices per reservation, HARNESS will map several reservations
to the same device to lower the cost to the user. The challenge will be the enforcement of the guaranteed
performance and the optimal mapping of reservations to devices.

The final set of requirements relate to heterogeneous storage in the HARNESS platform.

R20 Implement resource reservations that are abstract from physical devices
An abstract description of the required storage resources should be specified, rather than a list of
physical devices. For example, users can decide between four different storage classes: random
access, sequential access, best effort, and cold storage. They must only provide expected IOPS.
Additionally, the platform must describe durability requirements.

State-of-the-art focus: heterogeneity, resource management.
Task: T5.2,
T5.3

Innovation: medium Importance: critical
Dependencies: R6

R21 Implement time-dependent anticipated usage pattern
It should be possible to describe how the storage usage pattern will change over time. This will
allow the scheduler to make better use of physical resources by collocating reservations with
complementary usage patterns.

State-of-the-art focus: resource management, performance.
Task: T5.3 Innovation: high Importance: moderate

Dependencies: none

R22 Implement virtual storage classes
Storage devices should be virtualised. By placing several reservations from potentially different
storage classes, we can make more efficient use of resources. This contrasts with today’s practice,
where every physical device is used for just one storage class.

State-of-the-art focus: resource management.
Task: T5.3 Innovation: high Importance: critical

Dependencies: none

R23 Develop performance models
Performance models of the different kinds of storage devices must be developed. For example, the
model should describe how they perform under random, sequential, and concurrent access. The
performance models will be used by the scheduler.

State-of-the-art focus: performance.
Task: T5.1 Innovation: medium Importance: critical

Dependencies: none

19

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

R24 Provide run-time summary of available resources to the platform
For scheduling decisions, the storage layer must provide summaries of the available storage
resources, both statically and dynamically.

State-of-the-art focus: resource management.
Task: T6.2 Innovation: low Importance: critical

Dependencies: none

20

4 Relevant EC FP Projects
This chapter summarises relevant EC-funded Framework Programme (FP) projects with specific focus
on the main research areas within HARNESS: cloud platforms, computation, communication, and stor-
age. We consider each research area in turn, summarising the goals and/or achievements of each project,
indicating whether HARNESS partners are or were involved in the project, and indicate how they could
contribute to the general requirements presented in Chapter 3.

4.1 Cloud Platforms

In this section we summarise the contributions of relevant FP projects that provide cloud PaaS and IaaS
environments.

Project Relevant Focus Period HARNESS Partners
4CaaSt Complex multi-tier applications 2010–2013 SAP, ZIB

ADVANCE
Performance feedback for concurrent programs
on heterogeneous resources 2010–2013 SAP

Cloud-TM Distributed transactional memory 2010–2013

ConPaaS (Contrail)
Integrated run-time environment for elastic
cloud applications 2010–2013 UR11

CumuloNimbo Scalability of transactional consistency 2010–2013 SAP
REMICS Reuse and migration of legacy applications 2010–2013

SRT-15
Content-based routing on hybrid cloud
computing infrastructures 2010–2013 SAP

Cloud4SOA Interoperability and vendor lock-in 2010–2013
Contrail Cloud federations 2010–2013 UR11

InterSECTION Security of complex networked systems 2008–2010
OPTIMIS Optimising the full cloud service life cycle 2010–2013

RESERVOIR
Reference architecture for next generation IaaS
clouds 2008–2011 SAP

SLA@SOI SLAs 2008–2011 SAP
TClouds Security and privacy of distributed systems 2010–2013

4.1.1 4CaaSt

4CaaSt [1] aims to build an advanced PaaS platform with a special focus on complex multi-tier applica-
tions. Applications will be described by a blueprint, which is a declarative language for describing the
interaction of different services. Customers can use preexisting blueprints from a marketplace provided
by 4CaaSt or design their own applications. The platform will automatically optimise performance and
scale the deployment to support SLAs.

1UR1’s team leader was previously a member of the Contrail project and the main architect of ConPaaS.

21

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

A smaller part of the project tries to make existing telecommunication APIs available to cloud ap-
plications. Two large telecommunication companies are members of the project and support this effort.

4.1.2 ADVANCE

ADVANCE [2] aims to use statistical performance feedback to dynamically adapt concurrent programs
to heterogeneous resources. The core of the project is to create a cost-centric directed virtualisation
layer for hardware present in a system. The goal of this costing approach is to make access to devices
transparent to the programmer while maintaining requirements of performance and power consump-
tion. The project looks at language extensions to capture performance information and aims to create
a “write-once, deploy-anywhere” programming paradigm using a virtualisation layer to transform code
into targeted implementations. Other work within the project creates resource prediction models from
user-supplied information and program feedback, looks at compilation costing of the program to target
the virtualisation layer, and uses program cost models and run-time feedback to place execution.

4.1.3 Cloud-TM

Cloud-TM [17] aims to define a novel programming paradigm to facilitate the development and admin-
istration of cloud applications. It develops a distributed transactional memory middleware that relieves
programmers of the burden of coding for distribution, persistence and fault tolerance, letting them focus
on delivering differentiating business value. Further, the Cloud-TM platform aims to minimise the op-
erational costs of cloud applications, pursuing optimal efficiency via autonomic resource provisioning
and pervasive self-tuning schemes.

4.1.4 ConPaaS

ConPaaS [20, 63] is a run-time environment for hosting applications in the cloud. It aims to offer the
full power of the cloud to application developers while shielding them from its associated complexity.
ConPaaS is designed to host both high-performance scientific applications and online Web applications.
It automates the entire life cycle of an application, including collaborative development, deployment,
performance monitoring, and automatic scaling. Finally, it runs on a variety of public and private clouds,
and is easily extensible. This allows developers to focus their attention on application-specific concerns
rather than on cloud-specific details. Services can be easily composed and are elastic.

The main architect of the ConPaaS system is now working at the HARNESS partner UR1. We plan
to use ConPaaS as the basis for further developments in the HARNESS project.

4.1.5 CumuloNimbo

CumuloNimbo [25] aims to address “vital” issues in future cloud computing platforms by developing a
highly scalable PaaS. The platform will provide full transactional guarantees without constraining how
applications are developed. The project addresses the scalability and dependability of service platforms
with the goal of achieving high scalability (100+ nodes) with strong transactional consistency and ease
of programming. Research activities focus on five main areas: strong consistency; update scalability;
dependability; elasticity; and low latency and high throughput. The project aims to adopt a “holistic”
approach, by considering all of the application server, database server, file system and storage tiers, as

22

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

well as distribution and transactional coordination. Currently there are no software outputs from the
project and no details on plans for this.

4.1.6 REMICS

REMICS [65] proposes methodologies for the migration of legacy systems to service clouds by provid-
ing a model-driven methodology and tools. This will be achieved by driving the standardisation work in
the Object Management Group (OMG) and by providing project results under open-source licenses.

4.1.7 SRT-15

SRT-15 [71] combines complex event processing, content-based routing and dependability, and privacy
technologies to produce a distributed service platform that allows enterprise applications to interact.
This platform aims to facilitate the processing of large volumes of data (coming to and from a variety of
heterogeneous distributed enterprise services) on a hybrid cloud computing infrastructure. Developed
under the SRT-15 project, StreamLine3G [72] is a scalable, elastic and fault tolerant event process-
ing/data streaming engine inspired by MapReduce [26]. It aims to overcome the high latency of the
batch processing involved in the store and process method. It is publicly available as of May 2012 and
has been used by a number of companies. PASC is a Java library that prevents the propagation of errors
caused by data corruption in processes of a distributed system [30]. Within the context of the SRT-15
project, the Italian SME Epsilon has developed an application that provides dependable QoS monitoring
of enterprise services running in the cloud. It is being tested and validated with a smart metering case
study that implements remote monitoring of power consumption in a smart grid environment.

4.1.8 Cloud4SOA

Cloud4SOA [18] addresses the issue of interoperability and vendor lock-in with respect to cloud com-
puting platforms. The project aims to interconnect PaaS offerings in a way that allows for data to be
managed and migrated across platforms that use different data models and APIs. Interconnection is
restricted to platforms that share the same background technology, such as Java-to-Java or PHP-to-PHP,
and is achieved though platform-specific adaptors that act as proxies between the Cloud4SOA system
and the various provider platforms. Developers wanting to deploy their application on the cloud can
take advantage of the system’s algorithm for matching application profiles to semantic descriptions of
available PaaS offerings. The health and performance of distributed applications can also be monitored.
Cloud4SOA is scheduled for a beta release in October 2013 and will be available on GitHub. Developers
can create new adaptors and customise existing adaptors to suit their needs.

4.1.9 Contrail

Contrail [21] vertically integrates an open-source distributed operating system for autonomous resource
management in IaaS environments with high-level services and run-time environments as foundations
for PaaS. The ConPaaS system mentioned above is one outcome of the Contrail project. The main
achievement will be a tightly integrated software stack in open source including a comprehensive set
of system, run-time and high-level services providing standardised interfaces for supporting coopera-
tion and resource sharing over cloud federations. Contrail will address key technological challenges in

23

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

existing commercial and academic clouds: the lack of standardised rich and stable interfaces; limited
trust from customers; and relatively poor QoS guarantees regarding the performance and availability of
cloud resources. Addressing these important issues is fundamental to support large user communities
formed of individual citizens and/or organisations relying on cloud resources for their mission-critical
applications. The main contribution of Contrail is an integrated approach to virtualisation, offering IaaS
services for IaaS cloud federation, and PaaS. It will aim at equalling current commercial clouds, and
surpassing them in a number of selected key domains to facilitate industrial uptake of federated cloud
computing.

4.1.10 InterSECTION

InterSECTION [45] aimed to develop algorithms and techniques that enhance the security of complex
networked systems. The project was focused on distributed systems, interconnected over heterogeneous
networks. A representative example would be a cloud that consists of multiple data centres, intercon-
nected over the Internet. One aspect that makes such a system particularly challenging to secure is that
the networks that interconnect its components are themselves vulnerable to a large variety of attacks.
The project addresses this challenge through new algorithms and techniques for network monitoring,
anomaly and intrusion detection, malware detection and analysis, and network status visualisation. In-
terSECTION is relevant to HARNESS in the sense that it could help secure any cloud infrastructure. Its
focus, however, is on the security of heterogeneous networks, not on heterogeneous resource manage-
ment.

4.1.11 OPTIMIS

OPTIMIS [60] provides an architectural framework and development toolkit for optimising the full
cloud service life cycle, service construction, deployment and operation in the cloud. The toolkit mea-
sures what it calls “key cloud deployment variables”—trust, risk, eco-efficiency, and cost—that can then
used to allow cloud service providers to make decisions on deployment, while also enabling deployment
on all cloud variants (private, hybrid, federated and multi). The OPTIMIS toolkit [61] is released as an
open-source download. A key feature is a monitoring infrastructure that gathers real-time information
on physical and virtual resources. Another component gathers information on trust, risk, eco-efficiency
and cost for both infrastructure providers and service providers. Other components manage service con-
struction, deployment and optimisation, image creation, data management across cloud environments,
VM management, including elasticity management, and handling fault tolerance of virtual machine in-
stances.

4.1.12 RESERVOIR

RESERVOIR [66] defined a reference architecture designed to meet next generation IaaS cloud require-
ments, such as guaranteeing SLAs, automating service deployment, provisioning and scalability. The
architecture is independent of different virtualisation technologies, supports federation across public,
private and hybrid clouds and makes use of open/standard specifications. The CLAUDIA platform is a
spin-out technology from RESERVOIR. CLAUDIA manages services as a whole, controlling the con-
figuration of multiple VMs, virtual networks and storage. It has a number of plug-ins that orchestrate

24

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

virtual resource allocation using a virtual infrastructure manager, such as OpenNebula [59], Eucaly-
pus [28] or vSphere [75], for deploying services to private clouds with support for deployment to public
clouds such as Amazon, Flexiscale [32] and others. This is available as a software download and is
also integrated with OpenNebula. The RESERVOIR project made use of the Lattice monitoring frame-
work [47] for monitoring of components. Lattice can be used to build a bespoke monitoring subsystem
and so may be of interest to HARNESS for monitoring components. It is distributed under a Lesser
General Public License (LGPL) license and available for download.

4.1.13 SLA@SOI

SLA@SOI [69] aimed to support a service-oriented economy, where IT-based services can be flexibly
traded as economic goods, that is, under well-defined and dependable conditions and with clearly associ-
ated costs. The idea is that this would allow for dynamic value networks that can be flexibly instantiated,
thus driving innovation and competitiveness. SLA@SOI attempted to provide three major benefits to
the provisioning of services: predictability and dependability, such that the quality characteristics of
services can be enforced at run time; transparent SLA management, such that the SLAs defining the
conditions under which services are provided/consumed can be transparently managed across the whole
business and IT stack; and automation, such that the process of negotiating SLAs and provisioning,
delivery and monitoring of services can be automated, allowing for highly dynamic and scalable service
consumption.

4.1.14 TClouds

TClouds [73] aims to develop a framework that enhances the security and privacy of distributed systems.
The project is focused on systems whose components potentially belong to different administrative en-
tities. A representative example would be a multi-cloud, where each constituent cloud is located in a
different country, hence subject to different security and privacy regulations. The challenge is how to
interconnect these components in a way that allows us to reason about the security and privacy, not
only of each separate component, but of the distributed system as a whole. A key goal of the project
is to identify and address the legal and business implications of such interconnections. TClouds is rel-
evant to HARNESS in the sense that it could be used to interconnect one HARNESS clouds. Its focus,
however, is on the security and privacy boundaries between different administrative domains, not on
heterogeneous resource management.

4.1.15 Relation to HARNESS General Requirements

The projects described above target various complementary forms of PaaS and IaaS environments. Sev-
eral address questions such as resource discovery, scheduling, SLA negotiation and monitoring. Some
address various security concerns in a cloud environment. Together, they provide a conceptual foun-
dation that the HARNESS project can exploit wherever possible. However, none of them explicitly
addresses the specific challenge of efficiently hosting applications in heterogeneous clouds.

The following two tables indicate which projects could contribute to the HARNESS requirements
described in Section 3.1.

25

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

4C
aa

St

A
D

VA
N

C
E

C
lo

ud
-T

M

C
on

Pa
aS

C
um

ul
oN

im
bo

R
EM

IC
S

SR
T-

15

R1: Provide an execution platform for
using heterogeneous resources

• • • •

R2: Provide support for flexible
applications

•

R3: Provide an application description
language

• •

R4: Provide an SLA description language
R5: Implement application performance

model generation
• •

R6: Implement resource co-allocation
scheduler (per application)

R7: Implement resource co-allocation
scheduler (multi-application)

R8: Provide design patterns for flexible
applications

• •

C
lo

ud
4S

O
A

C
on

tra
il

In
te

rS
EC

TI
O

N

O
PT

IM
IS

R
ES

ER
V

O
IR

SL
A

@
SO

A

TC
lo

ud
s

R1: Provide an execution platform for
using heterogeneous resources

• •

R2: Provide support for flexible
applications

R3: Provide an application description
language

•

R4: Provide an SLA description language •
R5: Implement application performance

model generation
•

R6: Implement resource co-allocation
scheduler (per application)

•

R7: Implement resource co-allocation
scheduler (multi-application)

•

R8: Provide design patterns for flexible
applications

•

26

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

4.2 Computation

In this section we summarise the contributions of relevant FP projects that provide the basis for exploit-
ing heterogeneous computational resources in HARNESS.

Project Relevant Focus Period HARNESS Partners

MORPHEUS
Heterogeneous multi-core platform with
reconfigurable fabric 2006–2008

HARTES
Programming methodology and compilation
design-flow for heterogeneous platforms 2006–2009 IMP

PEPPHER
Unified programming framework for heterogeneous
platforms 2010–2012

REFLECT
Aspect-oriented design-flow for capturing
non-functional concerns 2010–2012 IMP

FASTER
Advanced mapping and verification schemes for
reconfigurable hardware 2011–2013 MAX, IMP

4.2.1 MORPHEUS

MORPHEUS [53] provided a heterogeneous platform for embedded devices. The project designed an
multiprocessor system-on-chip (MPSoC) that included an ARM9 general-purpose processor that coor-
dinated three types of reconfigurable units acting as co-processors and operating under different levels
of granularity. In addition, the MORPHEUS project provided a programming model that viewed its
heterogeneous platform as a single virtual processor, and in which reconfigurable accelerators acted as
customised functional units to extend the instruction set architecture.

Developers, however, were required to manually partition the application, and map each partition to
suitable accelerators. By carefully deciding which functions would be offloaded to reconfigurable units
and which would be implemented in software, one could expect an increase in performance, flexibility
and reuse capability. Some of the techniques used in MORPHEUS for offloading parts of the computa-
tion to multi-core reconfigurable accelerators acting as co-processors will prove useful in the context of
HARNESS to exploit the underlying cloud infrastructure.

4.2.2 HARTES

HARTES [13] provided a compilation approach for embedded heterogeneous multi-core platforms, in
which the complexity of the underlying hardware, including CPU, DSP and FPGA processing elements,
was abstracted from developers.

The HARTES compilation framework provided developers a familiar programming paradigm, oper-
ating on sequential C-language descriptions, with all the steps of mapping the application to the multi-
core platform fully automated to achieve real-time constraints. To achieve this purpose, the HARTES
compilation framework included a number of compilation engines, such as a task transformation per-
forming code and loop transformations that could be customised for a particular processing element,
a task partitioning engine that restructured the application to exploit different task granularities, and a
mapping selection process [49] that assigned existing tasks to available processing elements. In addi-

27

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

tion, the compiler framework could integrate different compiler back ends specific to each processing
element.

The tool chain also supported an extensive pragma annotation facility inspired by OpenMP [58],
which allowed developers to control parallelism, partitioning and mapping selection, thereby supporting
a semi-automatic design flow. These compilation engines, the annotation facility, and the programming
model that hides away heterogeneity, will be part of the technology that allows programmers to develop
cloud-based applications in HARNESS.

4.2.3 PEPPHER

PEPPHER [12] developed a unified framework for programming and optimising applications for het-
erogeneous multi-core CPUs with GPGPU-type accelerators. In particular, it focused on how to enable
performance and portability while minimising programming effort, rather than requiring applications or
algorithms to be repeatedly re-implemented for each generation of hardware.

The key idea behind PEPPHER was to maintain multiple implementation variants of performance-
critical components of the application and schedule these efficiently either dynamically or statically
across the available CPU and GPGPU resources. Implementation variants are developed manually,
through compilation support, by composition, or by auto-tuning.

While PEPPHER focused on a subset of the heterogeneous computational resources addressed by
HARNESS, the results could be leveraged by HARNESS to reduce programming effort required for
low-level resource utilisation.

4.2.4 REFLECT

REFLECT [64] focused on compilation techniques aimed at increasing design productivity and main-
tainability, and assisting developers in generating and exploring alternative and competing hard-
ware/software designs when mapped onto heterogeneous architectures. With the REFLECT tool chain,
developers were able to decouple functional and non-functional concerns. In particular, functional con-
cerns capture algorithmic behaviour and are implemented using traditional languages such as C. Non-
functional concerns, on the other hand, deal with desired qualities of the application, such as perfor-
mance and resource efficiency. For this purpose, a new aspect-oriented language called LARA [15] was
developed to capture non-functional concerns. The weaving process automatically combines applica-
tion sources and LARA aspects to derive an augmented application at compile time that satisfies both
functional and non-functional concerns.

For HARNESS, this aspect-oriented approach will bring two benefits to cloud providers offering
acceleration services. First, as functional and non-functional concerns are maintained independently,
they can be updated, removed or added more easily, thus significantly improving the maintainability and
portability of computational services across multiple cloud infrastructures. Second, as non-functional
concerns can be codified, this approach allows the development of compilation strategies that can be
reused and applied to different applications and target architectures, thus increasing design productivity.

28

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

4.2.5 FASTER

FASTER [29] addresses the development of applications for partially reconfigurable hardware. The
project adopts a holistic approach, developing a complete methodology for implementing and verifying
a partially reconfigurable system on a platform that combines processors with reconfigurable devices.

The FASTER tool chain aims to support a programmer in moving from a static version of an ap-
plication (possibly software only) to a dynamic, reconfigurable hardware/software version. FASTER
will include a run-time scheduler that manages the reconfiguration of device resources during applica-
tion execution—a challenge that has similarities with those that must be addressed by the HARNESS
platform, but on a much more restricted scale.

We anticipate that the methodology and tool flow developed by FASTER could be used to program
reconfigurable computational resources that in the HARNESS platform. HARNESS partners IMP and
MAX are partners in FASTER and will help to ensure coordination between the two projects.

4.2.6 Relation to HARNESS General Requirements

The projects described above provide insight into programming models, compilation design flows, run-
time resource management, and how to efficiently exploit reconfigurable devices in a heterogeneous
environment. Three of these projects (HARTES, REFLECT and FASTER) have partners that are now
involved in HARNESS, which will facilitate technology transfer among them. One of the key contribu-
tions from these projects will be the LARA aspect-oriented work [15] developed in REFLECT, which
will be adapted to generate design variant implementations in the context of the HARNESS platform.

The following table indicates which projects could contribute to the HARNESS requirements de-
scribed in Section 3.2.

FA
ST

ER

H
A

RT
ES

M
O

R
PH

EU
S

PE
PP

H
ER

R
EF

LE
C

T

R9: Develop a heterogeneous
computational resource discovery
protocol

•

R10: Develop a compiler infrastructure to
derive multi-target design variants

• • •

R11: Provide characterisation of
heterogeneous applications

•

R12: Enable shared use of heterogeneous
computational resources

• • •

R13: Provide monitoring data to support
decision making at the cloud

R14: Optimise the use of resources
according to optimisation goals within
constraints provided by the cloud
platform layer

•

29

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

4.3 Communication

In this section we summarise the contributions of relevant FP projects related to the communication
aspect of the HARNESS project.

Project Relevant Focus Period HARNESS Partners
BonFIRE Multi-site cloud infrastructure for IoT 2010–2013 SAP
GEYSERS Networking architecture for optical and IT resources 2010–2013 SAP

FI-WARE
Internet architecture focused on QoS and security
guarantees 2011–2014 SAP

NOVI
Access to and management of federated resources in
support of the Future Internet 2010–2013

4.3.1 BonFIRE

BonFIRE [14] provides a state-of-the art multi-site cloud facility for applications, services and systems
research. The facility gives researchers access to large-scale virtualised computational, communication,
and storage resources with high level control and monitoring services for detailed experimentation of
their systems and applications. The facility allows the evaluation of cross-cutting effects of converged
service and network infrastructures. Specific features of BonFIRE allow the reservation of large-scale
computational capacity with options for exclusive access to physical hosts and control over VM place-
ment within a test bed. VM images can be customised for a specific number of CPU cores and RAM
sizes with options for adding more storage and levels of persistence. In terms of networking, network
topology can be fully customised, so various networking configurations are possible. Bandwidth, latency
and loss rates can be statically or dynamically configured with further options to set background traffic
levels. BonFIRE extends Zabblix [78] to create a custom monitoring framework that allows fine-grained
monitoring of both virtual and physical resources. Another interesting feature is the ability to subscribe
to notifications regarding state and resource changes.

4.3.2 GEYSERS

GEYSERS [34] aims to create an architecture for the provisioning of optical network and IT resources,
by virtualising both traditional resources and optical networking resources. Two key components are
required to enable this functionality: the Logical Infrastructure Composition Layer (LICL) and the Net-
work Control Plane (NCP). The LICL controls deployment of virtual resources upon the physical net-
work and IT infrastructures layers. It enables application service infrastructures to interconnect logical
resources based on the requirements of virtual networking infrastructure operators while also handling
monitoring of the physical layer. The NCP is responsible for mapping the application requirements and
managing the logical infrastructure created by the LICL. Each independent logical infrastructure is man-
aged by one NCP that is responsible for the dynamic provisioning, monitoring and recovery functions.
Currently, there is no software released for open source consumption but this is planned for mid-2013.

30

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

4.3.3 FI-WARE

FI-WARE [31] aims to develop a new Internet architecture that offers QoS and security guarantees, as
well as extensibility. The latter property relies on “generic enablers”, which are pieces of functionality
deployed at key network points that can be combined to offer a new service. In some sense, the FI-
WARE project is about turning the Internet into a massive cloud, and about providing the APIs through
which end users and operators will be able to program this cloud with new functionality. The HARNESS
context is a more modest one, as we do not aim to redesign the Internet, just the resource management
of clouds and data centres. However, the two projects could potentially benefit from each other: If we
view the Internet as a cloud, then it is a heterogeneous cloud, so our ideas of managing heterogeneous
resources apply. At the same time, we could inherit ideas on how to provide QoS and security guarantees
over a best-effort network.

4.3.4 NOVI

NOVI [56] shares the same goal with FI-WARE (summarised above): turn the Internet into a mas-
sive cloud and provide APIs through which end-users and operators can manage this cloud. Instead of
FI-WARE’s “generic enablers,” NOVI relies on “slices” of the network resources allocated to differ-
ent applications and users. One focus area of the NOVI project is the incorporation of Semantic Web
concepts. Another focus area is the “federation” of data, control, monitoring and resource manage-
ment across different administrative entities. HARNESS can certainly benefit from the resulting ideas,
although our context is more modest—one cloud with a wide variety of heterogeneous resources.

4.3.5 Relation to HARNESS General Requirements

We have identified two kinds of related projects. The first kind (BonFIRE and GEYSERS) provide
ways to allocate network resources to applications, as well as to monitor and report usage of network
resources. We can benefit from these by reusing some of their allocation, monitoring, and reporting
interfaces and techniques. The second kind (FI-WARE and NOVI) provide ways to extend the Internet
architecture with new functionality. We can benefit from these by learning from their experiences in
network programming (although programming the Internet is a much more ambitious goal than ours,
which is to program switches and middleboxes in a data centre).

The similarity between these projects and ours is that, at a high level, we all provide interfaces and
techniques for the management and/or programming of network (and other) resources. BonFIRE and
GEYSERS, in particular, provide interfaces and techniques for allocating, monitoring, and reporting on
the usage of network resources. We will try to benefit from them as much as possible, because our goal
is not to innovate in these particular aspects (resource allocation, monitoring, and reporting).

On the other hand, the communication part of the HARNESS project has a distinct angle that is
not covered by any existing project: a cloud that consists of heterogeneous and programmable network
devices (e.g., OpenFlow switches [33] and software middleboxes). The HARNESS project must un-
derstand how to best leverage these in order to improve application performance. For instance, the
performance of MapReduce applications can benefit significantly from in-network aggregation [24].
Hence, the HARNESS platform tries to allocate to each such application, not only end servers that per-
form mapping and reducing, but also network middleboxes that perform in-network aggregation. The

31

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

difficult questions that we aim to answer are: what are the “right” interfaces for programming network
devices and how can we prove useful properties for them, such as that a network device performing
in-network aggregation will not introduce more than a certain amount of latency. FI-WARE and NOVI
can help us to answer the first question, although their level of programming is quite different from ours,
so it is unlikely that we can use their specific interfaces.

The following table indicates which projects could contribute to the HARNESS requirements de-
scribed in Section 3.3.

B
on

FI
R

E

G
EY

SE
R

S

FI
-W

A
R

E

N
O

V
I

R15: Enable programming of network processing units • •
R16: Implement verification of properties of network

processing units
R17: Provide a description of network resources • •
R18: Manage the allocation of network resources • •
R19: Provide reporting of network-resource usage • •

4.4 Storage

In this section we summarise the contributions of relevant FP projects that explicitly address storage.
While many of the projects described above also contain some aspect of storage, it is not their major
focus. For the purposes of this report, then, the three of interest are Contrail (4.1.9), RESERVOIR
(4.1.12), and VISION Cloud (4.4.1).

Project Relevant Focus Period HARNESS Partners
Contrail Cloud federations 2010–2013 UR11

RESERVOIR
Reference architecture for next generation IaaS
clouds 2008–2011 SAP

VISION Cloud
Managing and accessing large data volumes in the
cloud 2010–2013 SAP

4.4.1 VISION Cloud

VISION Cloud [74] focuses on the challenge of processing and managing large data volumes in the
cloud. VISION Cloud aims to enable the provision of data and storage services across administration
boundaries while maintaining quality of service and security guarantees. A main theme of VISION
Cloud is “computational storage” whereby execution is performed local to the data as much as possible.
The project also aims to create access to data, not through conventional targeting of the underlying stor-
age containers, but rather through rich meta-data and relationships via topology creation. The primary
deliverable from VISION Cloud (due September 2013) is an infrastructure demonstrating computational
storage and content-specific access to data. The two main uses cases are health care, allowing access to
personal data based on context and need, and telecommunications media streaming.

32

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

4.4.2 Relation to HARNESS General Requirements

All major platform projects contain a storage component. But the number of projects solely focused on
storage is still small. We expect a large number of storage projects in the next FP calls with a focus
on so-called Big Data. Similar to the platform projects, they will also cover large parts of the cloud
software stack, but they will usually target a specific application with a heavy focus on machine learning
and decision making.

VISION Cloud is one of the early storage and Big Data projects. They concentrate on high-level ab-
stractions for data access and computational storage. Heterogeneous storage devices are not an identified
topic, as it is for HARNESS.

The following table indicates which projects could contribute to the HARNESS requirements de-
scribed in Section 3.4.

C
on

tra
il

R
ES

ER
V

O
IR

V
IS

IO
N

C
lo

ud

R20: Implement resource reservations that are abstract from
physical devices

• • •

R21: Implement time-dependent anticipated usage pattern
R22: Implement virtual storage classes • • •
R23: Develop performance models
R24: Provide run-time summary of available resources to the

platform

33

34

5 Conclusions
This report presents the general requirements of the HARNESS project. HARNESS will develop an
enhanced cloud platform that utilises a collection of advanced, heterogeneous technologies. To realise
such a platform, a number of technical objectives must be met (Section 1.4).

We have evaluated the current state of the art in cloud computing (Chapter 2) and found that the lack
of fully integrated heterogeneous hardware into current cloud platforms leads to limitations, particularly
in performance and scalability. The requirements of the project address these issues.

We have assembled a list of general requirements for the project (Chapter 3) . These requirements are
unique to the project and its specific objectives and, as such, most will require a high level of innovation.
When these requirements are met, the resulting cloud platform will present a significant advancement in
cloud computing.

Finally, we have performed a comprehensive analysis of ongoing FP projects relevant to HARNESS
(Chapter 4). While they will provide valuable insight as the project progresses, none explicitly addresses
the challenges of exploiting heterogeneous hardware.

35

36

Bibliography
[1] 4CaaSt Project. Available at http://4caast.morfeo-project.org/.

[2] Advance project. Available at http://www.project-advance.eu/.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity Data Center Network
Architecture. In Proceedings of the ACM SIGCOMM Conference on Data Communication, 2008.

[4] J. Allspaw. The art of capacity planning: Scaling Web resources. O’Reilly Media, 2009.

[5] Amazon, Inc. Cluster GPU Instance. Available at
http://aws.amazon.com/hpc-applications/.

[6] Amazon, Inc. DynamoDB. Available at http://aws.amazon.com/dynamodb/.

[7] Amazon, Inc. EC2 Instance Types. Available at
http://aws.amazon.com/ec2/instance-types.

[8] Amazon, Inc. Elastic Beanstalk. Available at
http://aws.amazon.com/elasticbeanstalk/.

[9] Amazon, Inc. Elastic Block Store. Available at http://aws.amazon.com/ebs/.

[10] Amazon, Inc. Relational Database Service. Avaialble at http://aws.amazon.com/rds/.

[11] Apache. Hive. Available at http://hive.apache.org/.

[12] S. Benkner, S. Pllana, J. Traff, P. Tsigas, U. Dolinsky, C. Augonnet, B. Bachmayer, C. Kessler,
D. Moloney, and V. Osipov. PEPPHER: Efficient and productive usage of hybrid computing
systems. IEEE Micro, 31(5):28–41, 2011.

[13] K. Bertels, V. Sima, Y. Yankova, G. Kuzmanov, W. Luk, J. Coutinho, F. Ferrandi, C. Pilato,
M. Lattuada, D. Sciuto, and A. Michelotti. Hartes: Hardware-software codesign for
heterogeneous multicore platforms. IEEE Micro, 30(5):88–97, 2010.

[14] BonFIRE Project. Available at http://www.bonfire-project.eu/.

[15] J. Cardoso, T. Carvalho, J. Coutinho, W. Luk, R. Nobre, P. Diniz, and Z. Petrov. LARA: An
aspect-oriented programming language for embedded systems. In Proceedings of the 11th Annual
International Conference on Aspect-Oriented Software Development, pages 179–190, 2012.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. BigTable: A distributed storage system for structured data. In Proceedings of
the Symposium on Operating System Design and Implementation, Nov. 2006.

37

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

[17] Cloud-TM Project. Available at http://www.cloudtm.eu/.

[18] Cloud4SOA Project. Available at http://www.cloud4soa.eu/.

[19] CloudFoundry. Available at http://www.cloudfoundry.com/.

[20] ConPaaS Project. Available at http://www.conpaas.eu/.

[21] Contrail Project. Available at http://www.contrail-project.eu/.

[22] P. Costa, A. Donnelly, G. O’Shea, and A. Rowstron. CamCube: A key-based data center.
Technical Report TR-2010-74, Microsoft Research, 2010.

[23] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Camdoop: Exploiting in-network
aggregation for big data applications. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, 2012.

[24] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. NaaS: Network-as-a-service in the cloud.
In Proceedings of the 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services, Apr. 2012.

[25] CumuloNimbo Project. Available at http://www.cumulonimbo.eu/.

[26] J. Dean and S. Ghemawat. MapReduce: A flexible data processing tool. Communications of the
ACM, 53(1), 2010.

[27] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. RouteBricks: Exploiting parallelism to scale software routers. In Proceedings
of the ACM Symposium on Operating Systems Principles, 2009.

[28] Eucalyptus Project. Available at http://www.eucalyptus.com/.

[29] FASTER Project. Available at http://www.fp7-faster.eu/.

[30] D. G. Ferro. PASC: Practical arbitrary state corruptions. Available at
https://github.com/dgomezferro/pasc/.

[31] FI-WARE Project. Available at http://www.fi-ware.eu/.

[32] Flexiant. Flexiscale. Available at http://www.flexiscale.com/.

[33] O. N. Foundation. OpenFlow. Available at http://www.openflow.org/.

[34] GEYSERS Project. Available at http://www.geysers.eu/.

[35] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A GPGPU transparent virtualization
component for high performance computing clouds. In Proceedings of the 16th International
Euro-Par Conference on Parallel Processing, number 6271 in Lecture Notes in Computer
Science, pages 379–391. Springer-Verlag, 2010.

38

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

[36] Google, Inc. App Engine. Available at
https://developers.google.com/appengine/.

[37] Google, Inc. Compute Engine. Available at
https://cloud.google.com/products/compute-engine/.

[38] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data center network. In Proceedings of the ACM
SIGCOMM Conference on Data Communication, 2009.

[39] B. Grobauer, T. Walloschek, and E. Stocker. Understanding cloud computing vulnerabilities.
IEEE Security and Privacy, 9(2):50–57, 2011.

[40] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube: A high
performance, server-centric network architecture for modular data centers. In Proceedings of the
ACM SIGCOMM Conference on Data Communication, 2009.

[41] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, and S. Luz. DCell: A scalable and fault-tolerant
network structure for data centers. In Proceedings of the ACM SIGCOMM Conference on Data
Communication, 2008.

[42] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and P. Ranganathan.
GViM: GPU-accelerated virtual machines. In Proceedings of the 3rd ACM Workshop on
System-Level Virtualization for High Performance Computing, pages 17–24, 2009.

[43] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-accelerated software router. In
Proceedings of the ACM SIGCOMM Conference on Data Communication, 2010.

[44] Heroku. Available at http://www.heroku.com/.

[45] InterSECTION Project. Available at http://www.intersection-project.eu/.

[46] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader: Cheap SSL acceleration with
commodity processors. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation, 2011.

[47] The Lattice Monitoring Framework. Available at
http://clayfour.ee.ucl.ac.uk/lattice/.

[48] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: A programming model for
heterogeneous multi-core systems. In Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, 2008.

[49] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne, K. Susanto, Q. Liu, and W. Wong. A
high-level compilation toolchain for heterogeneous systems. In IEEE International Conference
on System-on-Chip, pages 9–18, 2009.

[50] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging parallelism for multi-dimensional packet
classification on software routers. In Proceedings of the ACM SIGMETRICS Conference, 2010.

39

GENERAL REQUIREMENTS REPORT HARNESS DELIVERABLE 2.1

[51] M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application deadlines in
cloud workflows. In Proceedings of the IEEE International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–12, 2011.

[52] Microsoft, Inc. Azure Services Platform. Available at http://www.azure.net/.

[53] MORPHEUS. Available at http://www.morpheus.arces.unibo.it/.

[54] MySQL Database. Available at http://www.mysql.com/.

[55] X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell. Exploiting run-time reconfiguration in stencil
computation. In IEEE Conference on Field Programmable Logic and Applications, pages
173–180, 2012.

[56] NOVI Project. Available at http://www.fp7-novi.eu/.

[57] NVIDIA, Inc. Introducing the GPU-accelerated cloud. Available at
http://www.nvidia.com/object/vdi-desktop-virtualization.html.

[58] OpenMP. Available at http://openmp.org/.

[59] OpenNebula. Available at http://www.opennebula.org/.

[60] OPTIMIS. Available at http://www.optimis-project.eu/.

[61] OPTIMIS Toolkit. Available at http://www.optimis-project.eu/downloads/.

[62] Oracle Database. Available at http://www.oracle.com/us/products/database/.

[63] G. Pierre and C. Stratan. ConPaaS: A platform for hosting elastic cloud applications. IEEE
Internet Computing, 16(5):88–92, September-October 2012.

[64] REFLECT Project. Available at http://www.reflect-project.eu/.

[65] REMICS Project. Available at http://www.remics.eu/.

[66] RESERVOIR Project. Available at http://www.reservoir-fp7.eu/.

[67] L. Schubert and K. Jeffery. Advances in clouds—Research in future cloud computing. Expert
Group Report, European Commission, Information Society and Media, 2012.

[68] L. Shi, H. Chen, J. Sun, and K. Li. vCUDA: GPU-accelerated high-performance computing in
virtual machines. IEEE Transactions on Computers, 61(6):804–816, 2012.

[69] SLA@SOI Project. Available at http://www.sla-at-soi.eu/.

[70] W. W. Smari, S. Fiore, and D. Hill. High performance computing and simulation: Architectures,
systems, algorithms, technologies, services, and applications. Concurrency and Computation:
Practice and Experience, 2013.

[71] SRT-15 Project. Available at http://www.srt-15.eu/.

40

HARNESS DELIVERABLE 2.1 GENERAL REQUIREMENTS REPORT

[72] StreamMine3G. Available at https://streammine3g.inf.tu-dresden.de/trac/.

[73] TClouds Project. Available at http://www.tclouds-project.eu/.

[74] Vision Cloud Project. Available at http://www.visioncloud.eu/.

[75] VMware, Inc. vSphere. Available at http:
//www.vmware.com/products/datacenter-virtualization/vsphere/.

[76] J. R. Wernsing and G. Stitt. Elastic computing: A framework for transparent, portable, and
adaptive multi-core heterogeneous computing. In Proceedings of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, pages 115–124, 2010.

[77] Xen.org. PCI Passthrough. Available at
http://wiki.xen.org/wiki/Xen_PCI_Passthrough.

[78] Zabbix. Available at http://www.zabbix.com/.

[79] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: State-of-the-art and research challenges.
Journal of Internet Services and Applications, 1(1):7–18, 2010.

41

